

SrLnAlO₄ (Ln=Nd and Sm) Microwave Dielectric Ceramics

XIANG MING CHEN*, YANG XIAO, XIAO QIANG LIU & XING HU

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

Submitted May 7, 2003; Revised May 31, 2003; Accepted June 6, 2003

Abstract. SrLnAlO₄ (Ln=Nd and Sm) ceramics with K₂NiF₄ structure were prepared by a solid state reaction approach, and their microwave dielectric characteristics were evaluated together with the microstructures. The single phase dense SrNdAlO₄ and SrSmAlO₄ ceramics were obtained by sintering at 1450–1475°C and 1475–1500°C, respectively, and the good microwave dielectric characteristics were achieved: (1) $\varepsilon = 17.8$, $Q \cdot f = 25,700$ GHz, $\tau_f = -9$ ppm/°C for SrNdAlO₄; and (2) $\varepsilon = 18.8$, $Q \cdot f = 54,880$ GHz, $\tau_f = 2$ ppm/°C for SrSmAlO₄ dense ceramics. The *Qf* value significantly increased with increasing sintering temperature.

Keywords: SrLnAlO₄, microwave dielectric properties, ceramics, sintering, microstructures

Introduction

Recently, a group of compounds with general chemical formula ABCO₄ (A = Ca or Sr; B = Y, La, Nd or Sm; C = Al or Ga) and K₂NiF₄-type structure has attracted much scientific attention because of their potential applications as substrates for high- T_c superconductor thin films [1–10]. SrLaAlO₄ was reported as the first compound in ABCO₄ group by Ruddlesden and Popper [1]. Since then, the structure, crystallization and properties of ABCO₄ compounds were investigated by several authors [2–10]. So far, investigations have concentrated on the single crystals of ABCO₄ and their substrate application, and there is rarely report on ABCO₄ ceramics.

On the other hand, since ABCO₄ crystals have a dielectric constant around 20 combined with a very low dielectric loss at microwave frequencies [8, 9], their ceramics might be promising new candidates of low loss microwave dielectric ceramics for resonator and filter applications. Compared with the typical low loss microwave dielectric ceramics such as Ba(Mg_{1/3}Ta_{2/3})O₃ [11], Ba(Zn_{1/3}Ta_{2/3})O₃ [12], and LaAlO₃ [13], ABCO₄ ceramics may have the merits of easy preparation combined with low cost because of

their lower melt points and using low cost raw materials. However, there is rare report on the preparation and the dielectric properties especially microwave dielectric properties of ABCO₄ ceramics.

In the present work, SrLnAlO₄ (Ln=Nd and Sm) ceramics are prepared by the solid state reaction method, and the microwave dielectric properties are characterized together with the microstructures.

Experimental Procedure

SrLnAlO₄ (Ln=Nd and Sm) ceramics were prepared by a solid-state reaction process using reagent-grade SrCO₃ (99.95%), Nd₂O₃ (99%), Sm₂O₃ (99.9%), and Al₂O₃ (99.98%) powders as the raw materials. The weighed raw materials were mixed by ball milling with zirconia media in ethanol for 24 h, and the mixtures were heated at 1200°C in air for 3 h after drying. The calcined powders, with 6 wt% of PVA added, were pressed into disks measuring 12 mm in diameter and 2–6 mm high and then sintered at 1400°C–1500°C in air for 3 h. After cooling from the sintering temperature to 1100°C at a rate of 2°C/min, the ceramics were cooled inside the furnace.

Ground and thermal-etched surfaces of the sintered samples were observed by scanning electron

^{*}To whom all correspondence should be addressed. E-mail: xmchen@cmsce.zju.edu.cn

112 Chen et al.

microscopy (SEM), and the crystal phases were determined by powder x-ray diffraction (XRD) using Cu K α radiation after crushing and grinding. Dielectric constant ε and quality factor Q (the inverse of dielectric loss, tan δ) were evaluated around 10 GHz using the resonator method of Hakki and Coleman [14]. Because Qfactor generally varies inversely with the frequency, in the microwave region, the product of Qf was used to evaluate the dielectric loss instead of Q. The temperature coefficient of the dielectric constant, τ_{ε} was evaluated at 1 MHz, using an LCR meter (Model HP4284A, Hewlett-Packard Co., Palo Alto, CA) equipped with a thermostat. The τ_f value was evaluated from the equation,

$$\tau_f = -(\tau_\varepsilon/2) - \alpha \tag{1}$$

where α was the linear expansion coefficient [15]. The value of α was around 8 ppm/°C for SrLnAlO₄ (Ln=La, Nd and Sm) [8].

Results and Discussion

Both SrNdAlO₄ and SrNdAlO₄ single phase powders can be synthesized by a solid reaction process at 1200° C in air for 3 hours through the following

Fig. 1. Variation of relative density of SrNdAlO₄ and SrSmAlO₄ ceramics as function of sintering temperature.

reactions:

$$SrCO_3 + Nd_2O_3 + Al_2O_3 = SrNdAlO_4 + CO_2(g)$$
(1)
$$SrCO_3 + Sm_2O_3 + Al_2O_3 = SrSmAlO_4 + CO_2(g)$$

(2)

The dense ceramics can be obtained by sintering the powder compacts in air at $1450-1475^{\circ}C$ and $1475-1500^{\circ}C$, respectively. The X-ray theoretic density is calculated as 6,227 Kg/m³ for SrNdAlO₄ and

Fig. 2. XRD patterns of (a) SrNdAlO₄ and (b) SrSmAlO₄ ceramics sintered at various temperatures.

6,387 Kg/m³ for SrSmAlO₄. Figure 1 gives the variation of relative density of SrNdAlO₄ and SrSmAlO₄ ceramics with sintering temperature. The former has a lower densification temperature, 1450°C, but the maximum relative density is only 97% T.D. (theoretic density). On the other hand, nearly full densification (>99% T.D.) can be achieved in the latter though the densification temperature is higher (1475°C).

XRD patterns of SrNdAlO₄ and SrSmAlO₄ ceramics are shown in Fig. 2. All peaks can be

assigned to SrNdAlO₄ (JCPD Card No. 71-0893) and SrSmAlO₄ (JCPD Card No. 24-1190) with tetragonal K_2NiF_4 structure. With varying the sintering temperature, no significant difference can be distinguished in XRD patterns. The SEM micrographs of SrNdAlO₄ and SrSmAlO₄ ceramics are shown in Figs. 3 and 4, respectively. The obvious grain growth is observed for SrNdAlO₄ ceramics sintered at temperatures above 1450°C and for SrSmAlO₄ ceramics sintered at temperatures above 1475°C.

Fig. 3. SEM micrographs of SrNdAlO₄ ceramics sintered in air for 3 h: (a) sintered at 1400°C; (b) sintered at 1425°C; (c) sintered at 1450°C; and (d) sintered at 1475°C.

Fig. 4. SEM micrographs of SrSmAlO₄ ceramics sintered in air for 3 h: (a) sintered at 1425°C; (b) sintered at 1450°C; (c) sintered at 1475°C; and (d) sintered at 1500°C.

The microwave dielectric properties of SrNdAlO₄ and SrSmAlO₄ ceramics are listed in Table 1. The dielectric constant is slightly different for the present two ceramics (17.8 for the former and 18.8 for the latter), but the Qf value is significantly different. The latter has a much higher Qf value (54,880 GHz) than the former (25,700 GHz), and this is primarily due to the more ordered state of A-site cations of the latter since the ion radio difference between Sr²⁺ and Sm³⁺ is greater than that between Sr²⁺ and Nd³⁺. In addition, the higher relative density and less porosity also contribute to the higher Qf value of SrSmAlO₄. A very small temperature coefficient of resonant frequency can be obtained in the present ceramics, -8 - -9 ppm/°C for SrNdAlO₄ and 2–5 ppm/°C for SrSmAlO₄ dense ceramics. The dielectric constant and temperature coefficient change slightly while the Qf value indicates significant variation with varying sintering temperature. The Qf value increases significantly with increasing sintering temperature, and this tendency is more obvious for SrSmAlO₄. Since there is almost no change in XRD patterns with sintering temperatures, the

Composition	Sintering condition	f_0 (GHz)	ε	tanδ	Qf (GHz)	$\tau_f \text{ (ppm/°C)}$
SrNdAlO ₄	1425°C/3 h	9.33	17.5	0.00043	21700	-9
SrNdAlO ₄	1450°C/3 h	10.34	17.6	0.00045	22980	-8
SrNdAlO ₄	1475°C/3 h	10.28	17.8	0.0004	25700	-9
SrSmAlO ₄	1450°C/3 h	10.14	17.3	0.00032	31690	5
SrSmAlO ₄	1475°C/3 h	9.46	18.2	0.00018	52560	5
SrSmAlO ₄	1500°C/3 h	8.78	18.8	0.00016	54880	2

Table 1. Microwave dielectric properties of SrNdAlO₄ and SrSmAlO₄ ceramics sintered at various temperatures

influence of phase constitution and cation ordering is absent. Therefore, the variation of Qf value of the present ceramics with sintering temperature should be primarily related to the variation of grain size. The grain size increases significantly with increasing sintering temperature, and it leads to the decreased amount of grain boundaries, subsequently the density of lattice defects rich in the vicinity of grain boundary decreases, and therefore results in the decreased dielectric loss and increased Qf value. Moreover, the increased relative density and less porosity with increasing sintering temperature are also beneficial to the higher Qf value.

Conclusion

The single phase SrNdAlO₄ and SrSmAlO₄ dense ceramics were obtained by sintering at 1450–1475°C and 1475–1500°C, respectively, and the good microwave dielectric characteristics were achieved: (1) $\varepsilon = 17.8$, $Q \cdot f = 25,700$ GHz, $\tau_f = -9$ ppm/°C for SrNdAlO₄; and (2) $\varepsilon = 18.8$, $Q \cdot f = 54,880$ GHz, $\tau_f = 2$ ppm/°C for SrSmAlO₄. The dielectric constant and temperature coefficient changed slightly with sintering conditions, while the Qf value increased significantly with increasing sintering temperature.

Acknowledgment

This work was partially supported by National Science Foundation of China under grant number 50272058 and Chinese National Key Project for Fundamental Researches under grant number 2002CB613302.

References

- 1. S.N. Ruddlesden and P. Popper, Acta Crystallogr., 10(8), 538 (1957).
- 2. R. Sobolewski, P. Gierlowski, W. Kula, et al., *IEEE Transactions* on Magnetics, **27**(2), 876 (1991).
- R. Brown, V. Pendrick, D. Kalokitis, and B.H.T. Chai, *Appl. Phys. Lett.*, 57(13), 1351 (1990).
- 4. A. Pajaczkowska and P. Byszewski, J. Cryst. Growth, **12**(1–4), 694 (1993).
- R.D. Shannon, R.A. Oswald, J.B. Parise, et al., J. Solid State Chem., 98, 90 (1992).
- A. Dabkowski, H.A. Dabkowska, and J.E. Greendan, J. Cryst. Growth, 132, 205 (1993).
- P. Byszewski, J. Domagala, J. Fink-Fionowicki, and A. Pajaczkowska, *Mater. Res. Bull.*, 27, 483 (1992).
- A. Pajaczkowska and A. Gloubokov, Prog. Crystal Growth and Chatact., 36, 123 (1998).
- S. Erdei, M. McNeal, S.J. Jang, L.E. Cross, A.S. Bhalla, F.W. Ainger, A. Dabkowski, and H.A. Dabkowska, *J. Cryst. Growth*, 174, 324 (1997).
- 10. M. Berkowski, J. Alloys and Compounds, 251, 1 (1997).
- 11. X.M. Chen, Y. Suzuki, and N. Sato, J. Mater. Sci.: Mater. in Electronics, 5, 244 (1994).
- S. Kawashima, N. Nishida, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc., 66, 421 (1983).
- S.Y. Cho, I.T. Kim, and K.S. Hong, J. Mater. Res., 14, 114 (1999).
- B.W. Hakki and P.D. Coleman, *IRE Trans. Microwave Theory Tech.*, 8, 402 (1960).
- 15. E.L. Colla, I.M. Reaney, and N. Setter, J. Appl. Phys., 74(5), 3414 (1993).